Attraction of Newton method to critical Lagrange multipliers: fully quadratic case

نویسندگان

  • Alexey F. Izmailov
  • E. I. Uskov
چکیده

All previously known results concerned with attraction of Newton-type iterations for optimality systems to critical Lagrange multipliers were a posteriori by nature: they were showing that in case of convergence, the dual limit is in a sense unlikely to be noncritical. This paper suggests the first a priori result in this direction, showing that critical multipliers actually serve as attractors: for a fully quadratic optimization problem with equality constraints, under certain reasonable assumptions we establish actual local convergence to a critical multiplier starting from a “dense” set around the given critical multiplier. This is an important step forward in understanding the attraction phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Lagrange multipliers : what we currently know about them , how they spoil our lives , and what we can do about it

We discuss a certain special subset of Lagrange multipliers, called critical, which usually exist when multipliers associated to a given solution are not unique. This kind of multipliers appear to be important for a number of reasons, some understood better, some (currently) not fully. What is clear, is that Newton and Newton-related methods have an amazingly strong tendency to generate sequenc...

متن کامل

On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers

It has been previously demonstrated that in the case when a Lagrange multiplier associated to a given solution is not unique, Newton iterations [e.g., those of sequential quadratic programming (SQP)] have a tendency to converge to special multipliers, called critical multipliers (when such critical multipliers exist). This fact is of importance because critical multipliers violate the second-or...

متن کامل

On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions

Assuming that the primal part of the sequence generated by a Newton-type (e.g., SQP) method applied to an equality-constrained problem converges to a solution where the constraints are degenerate, we investigate whether the dual part of the sequence is attracted by those Lagrange multipliers which satisfy second-order sufficient condition (SOSC) for optimality, or by those multipliers which vio...

متن کامل

Blind Source Separation using Relative Newton Method combined with Smoothing Method of Multipliers

We study a relative optimization framework for quasi-maximum likelihood blind source separation and relative Newton method as its particular instance. The structure of the Hessian allows its fast approximate inversion. In the second part we present Smoothing Method of Multipliers (SMOM) for minimization of sum of pairwise maxima of smooth functions, in particular sum of absolute value terms. In...

متن کامل

On the duality of quadratic minimization problems using pseudo inverses

‎In this paper we consider the minimization of a positive semidefinite quadratic form‎, ‎having a singular corresponding matrix $H$‎. ‎We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method‎. ‎Given this approach and based on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2015